V EJEMPLO 2 Encuentre una solución de la ecuación diferencial $y' = \frac{1}{2}(y^2 - 1)$ que satisface la condición inicial y(0) = 2.

SOLUCIÓN Al sustituir los valores t = 0 y y = 2 en la fórmula

$$y = \frac{1 + ce^t}{1 - ce^t}$$

del ejemplo 1, se obtiene

$$2 = \frac{1 + ce^0}{1 - ce^0} = \frac{1 + c}{1 - c}$$

Si esta ecuación se resuelve para c, se obtiene 2-2c=1+c, que da $c=\frac{1}{3}$. Por tanto, la solución del problema con valores iniciales es

$$y = \frac{1 + \frac{1}{3}e^t}{1 - \frac{1}{3}e^t} = \frac{3 + e^t}{3 - e^t}$$

9.1 Ejercicios

- Demuestre que $y = \frac{2}{3}e^x + e^{-2x}$ es una solución de la ecuación diferencial $y' + 2y = 2e^x$.
- 2. Compruebe que $y = -t \cos t t$ es una solución del problema con valores iniciales

$$t\frac{dy}{dt} = y + t^2 \operatorname{sen} t \qquad y(\pi) = 0$$

- (3)a) ¿Para qué valores de r la función $y = e^{rx}$ satisface la ecuación diferencial 2y'' + y' y = 0?
 - b) Si r_1 y r_2 son los valores de r que encontró en el inciso a), demuestre que todo integrante de la familia de funciones $y = ae^{r_1x} + be^{r_2x}$ también es una solución.
- **4.** a) ¿Para qué valores de k la función $y = \cos kt$ satisface la ecuación diferencial 4y'' = -25y?
 - b) Para esos valores de k, verifique que cualquier integrante de la familia de las funciones y = A sen kt + B cos kt también es una solución.
- 5.) ¿Cuáles de las siguientes funciones son soluciones de la ecuación diferencial y'' + y = sen x?
 - a) $y = \sin x$

M

- b) $y = \cos x$
- c) $y = \frac{1}{2}x \operatorname{sen} x$
- d) $y = -\frac{1}{2}x \cos x$
- 6a) Demuestre que cualquier integrante de la familia de funciones $y = (\ln x + C)/x$ es una solución de la ecuación diferencial $x^2y' + xy = 1$.
 - b) Ilustre el inciso a) graficando diferentes miembros de la familia de soluciones en una pantalla común.
 - c) Encuentre una solución de la ecuación diferencial que satisface la condición inicial y(1) = 2.
 - d) Determine una solución de la ecuación diferencial que satisface la condición inicial y(2) = 1.

- Qué puede decir acerca de una solución de la ecuación $y' = -y^2$ con sólo observar la ecuación diferencial?
 - b) Compruebe que todos los miembros de la familia y = 1/(x + C) son soluciones de la ecuación del inciso a).
 - c) ¿Puede pensar en una solución de la ecuación diferencial $y' = -y^2$ que no sea un miembro de la familia del inciso b)?
 - d) Encuentre una solución del problema con valores iniciales

$$y' = -y^2$$
 $y(0) = 0.5$

- 8. a) ¿Qué se puede decir acerca de la gráfica de una solución de la ecuación y' = xy³ cuando x es cercana a 0? ¿Qué pasa si x es grande?
 - b) Compruebe que todos los miembros de la familia $y = (c x^2)^{-1/2}$ son soluciones de la ecuación diferencial $y' = xy^3$.
 - c) Grafique varios miembros de la familia de soluciones en una pantalla común. ¿Las gráficas confirman lo que predijo en el inciso a)?
 - d) Encuentre una solución del problema con valores iniciales.

$$y' = xy^3 \qquad \qquad y(0) = 2$$

(9.) Una población se modela mediante una ecuación diferencial

$$\frac{dP}{dt} = 1.2P \left(1 - \frac{P}{4200} \right)$$

- a) ¿Para qué valores de P la población es creciente?
- b) ¿Para qué valores de P la población es decreciente?
- c) ¿Cuáles son las soluciones de equilibrio?
- **10.** Una función y(t) satisface la ecuación diferencial

$$\frac{dy}{dt} = y^4 - 6y^3 + 5y^2$$

a) ¿Cuáles son las soluciones constantes de la ecuación?